Fast computation of Lyot-style coronagraph propagation.
نویسندگان
چکیده
We present a new method for numerical propagation through Lyot-style coronagraphs using finite occulting masks. Standard methods for coronagraphic simulations involve Fast Fourier Transforms (FFT) of very large arrays, and computing power is an issue for the design and tolerancing of coronagraphs on segmented Extremely Large Telescopes (ELT) in order to handle both the speed and memory requirements. Our method combines a semi-analytical approach with non-FFT based Fourier transform algorithms. It enables both fast and memory-efficient computations without introducing any additional approximations. Typical speed improvements based on computation costs are of about ten to fifty for propagations from pupil to Lyot plane, with thirty to sixty times less memory needed. Our method makes it possible to perform numerical coronagraphic studies even in the case of ELTs using a contemporary commercial laptop computer, or any standard commercial workstation computer.
منابع مشابه
Analytical Analysis of Lyot Coronographs Response
We derive an analytical solution to the computation of the output of a Lyot coro-nagraph for a given complex amplitude on the pupil plane. This solution, which does not require any simplifying assumption, relies on an expansion of the entrance complex amplitude on a Zernike base. According to this framework, the main contribution of the paper is the expression of the response of the coronagraph...
متن کاملApodized Pupil Lyot Coronagraph Working Without Lyot Stop
Aims. In the context of high contrast imaging, we propose to evaluate the performance of the Apodized Pupil Lyot Coronagraph (APLC) working without Lyot Stop, namely Stop-less Lyot Coronagraph (SLLC). This coronagraph is a combination of an entrance pupil apodizer and an opaque mask in the following focal plane. However, contrary to APLC, SLLC is amputated by the traditional pupil stop. Our goa...
متن کاملDouble Stage Lyot Coronagraph with the Apodized Reticulated Stop for Extremely Large Telescope
One of the science drivers for the Extremely Large Telescope (ELT) is imaging and spectroscopy of exo-solar planets located as close as 20mas to their parent star [1]. The application requires a well thought-out design of the high contrast imaging instrumentation. Several working coronagraphic concepts have already been developed for the monolithic telescope with the diameter up to 8 meter. Nev...
متن کاملTip-tilt Error in Lyot Coronagraphs
The direct detection of extrasolar planets by imaging means is limited by the large flux of light from the host star being scattered into the region of interest by a variety of processes, including diffraction. Coronagraphs are devices that suppress the undesirable scattering of light caused by diffraction. In a coronagraph the sensitivity limit for high dynamic range is limited by the propagat...
متن کاملSpiders in Lyot Coronagraphs
In principle, suppression of on-axis stellar light by a coronagraph is easier on an unobscured aperture telescope than on one with an obscured aperture. Recent designs such as the apodized pupil Lyot coronagraph, the ‘band-limited’ Lyot coronagraph, and several variants of phase mask coronagraphs work best on unobscured circular aperture telescopes. These designs are developed to enable the dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 15 24 شماره
صفحات -
تاریخ انتشار 2007